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Abstract: This investigation deals with the vibration analy-
sis of a rotating tapered shaft in Functionally GradedMate-
rial (FGM). The dynamic system is modeled using the Tim-
oshenko beam theory (FSDBT) with consideration of gyro-
scopic effect and rotary inertia. The equations of motion
are expressed by the hierarchical finite element method
based on bi-articulated boundary conditions. The mate-
rial properties are continuously varied in the thickness
direction of a hollow shaft according to the exponential
law function (E-FGM). The presented model is validated
by comparing the numerical results found with the avail-
able literature. Various analyses are carried out to deter-
mine the influence of taper angle andmaterial distribution
of the two extreme materials on the dynamic behavior of
FGM conical rotors system.

Keywords:Vibration analysis, tapered shaft, gyroscopic ef-
fect, hierarchical finite element, rotors conicity

1 Introduction
Vibrations are one of the principle subjects of rotating
shafts theory. Vibrations need to undergo the mastering
process and we must also know their resonance frequen-
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cies to avoid the critical pulsation that causes a reduction
of the yield and produces very high noise.

Indeed, vibrations can even lead to system instability
and failure. Therefore, shaft dynamics is extremely rele-
vant now. In the late 1980s, scientific researchers found the
means for combining the particles of a structure according
to a special method that led to amaterial with very specific
properties, which vary according to a known function. The
new material was named as Functionally Graded Material
(FGM), and as the name indicates, this material is gener-
ally associated with composite particles where the volume
fraction of the particles varies in one ormore directions [1].

The invention of the new material (FGM) opened up
new avenues by increasing the performance of industrial
machines due to its intrinsic qualities such as lightness
(combinedwith high strength characteristics) and good re-
sistance to corrosion. The industrial applications of ma-
chines have been extended due to the development of this
new material (FGM), which has been elaborated from a
new design and manufacturing philosophies.

The first FGMs were used in the designing and manu-
facturing of mechanical parts for aeronautical, aerospace,
maritime and construction structures and so on. Because
of their excellent mechanical properties, they can be sub-
jected to severe mechanical and/or thermal stress. Re-
cently, these materials have found other uses in electrical
appliances, energy transformation, biomedical engineer-
ing and optics [2].

Several studies have been carried out with a view
to studying the thermo-mechanical behavior of FGMs [3].
However, research on dynamic studies of rotors in FGM is
quite limited, and is particularly limited to theoretical [4].
He presented a model of an extended length cutting tool
intended to be operated in high speed operational by the
use of Galerkin’s general method, based on Timoshenko’s
beam theory [5, 6]. Applied a membrane analogy to ana-
lyze plates and shells in FGM based on a third-order the-
ory of plates [7]. He analyzed the free vibrations of a ro-
tating composite shaft based on the p-version of the finite
element method. [8] studied the free vibration analysis of
thick FGM plates on elastic bases with two parameters [9].
Hemainly deals with the dynamic analysis of a rotor made
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of FGM supported on two flexible bearings, he used the fi-
nite element method based on the theory of Timoshenko
(TBT) [10]. He proposed a new element for analyzing con-
ical beams with an arbitrarily variant cross-section of a
functionally classified material, [11]. He has analyzed ro-
tor vibration and stability in FGM and takes into account
the internal damping of the shaft.

The objective of this work is to present an analytical
model of the dynamic behaviors of functionally graded
tapered rotor shaft subjected on bi-articulated boundary
conditions. The vibration analysis is according to the first
shear deformation beam theory (FSDBT) while including
the gyroscopic effect and rotary inertia. The mechanical
properties are continuously varied in the thickness direc-
tion of a hollow shaft according to the exponential law
form (E-FGM). The government equations ofmotion are ex-
pressed using the finite element method combined by (p)
version of the hierarchicalmethod. Themodel presented is
validated by comparing the numerical results found with
those available in the literature. Several examples are ex-
amined in detail to determine the influence of the conical
angle and the material distribution on the dynamic behav-
ior of FGM tapered rotors shafts system.

2 Modeling of FGM tapered rotor
shaft

Considering a conical elastic shaft of circular cross-
section, the coordinates X and Y define the horizontal
plane of the shaft, while the Z axis defines the vertical
plane with the other axes, Figure 1.

Thematerial properties of this shaft are: Young’s mod-
ulus, density and Poisson coefficient. For current model,
the volume fraction varies continuously in the thickness
direction h.

Most researchers use the exponential function to de-
scribe thematerial properties of FGMs, defined by [12]. The
exponential law (E-FGM) of the Functionally Graded ta-
pered hollow shaft is modeling by:

p(r(x)) = pA .e−β(x).(r(x)−Ri(x)), x ∈ [0, L] (1)

With
β(x) = 1

(R0(x) − Ri(x))
ln(pApB

) (2)

where r(x) presents the variation of radius r as a function
of the position x, according to the conicity of the hollow
rotor system. The inner surface of the shaft (r(x) = Ri(x))
consists of 100%material (i), while the outer surface of the
shaft (r(x) = R0(x)) has 100%material (o).

Figure 1:Modeling of FGM tapered rotor shaft based on the con-
tained function of the material properties

3 Mathematical development
In Timoshenko’s theory, the kinematic assumptions of any
point on the tapered rotor shaft are adopted as follows:⎧⎪⎪⎨⎪⎪⎩

U(x, y, z, t) = U0(x, t) + zβx(x, t) − yβy(x, t)
V(x, y, z, t) = V0(x, t) − zϕ(x, t)
W(x, y, z, t) = W0(x, t) + yϕ(x, t)

(3)

The formula of the deformation energy of the system is:

Ed =
1
2

∫︁
(σxxεxx + 2τxrεxr + 2τθxεxθ).dv (4)

Eq. (4) in the developed form takes the following form:

Ed =
1
2

L∫︁
0

A11(x).
(︂
∂u0
∂x

)︂2
dx (5)

+

⎡⎣1
2

L∫︁
0

B11(x).
(︂
∂βx
∂x

)︂2
dx + 1

2

L∫︁
0

B11(x).
(︂
∂βy
∂x

)︂2
dx

⎤⎦
+ 1
2 ks

L∫︁
0

B66(x).
(︂
∂ϕ
∂x

)︂2
dx

+ 1
2 ks

L∫︁
0

(A55(x) + A66(x))

[︃(︂
∂v0
∂x

)︂2
+
(︂
∂w0
∂x

)︂2
+ β2x + β2x + 2βx

∂w0
∂x − 2βy

∂v0
∂x

]︃
dx
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The expression of the kinetic energy of the shaft is given
by the following equation:

Ec =
1
2

∫︁
ρ(⃗̇Rp/o .⃗̇Rp/o)dν (6)

The kinetic energy in developed form is:

Ec =
1
2

1∫︁
0

[︁
Im(x)(u̇20 + v̇20 + ẇ2

0) + Id(x)(β̇2x + β̇2y ) (7)

− 2ΩIp(x)βx β̇y + 2ΩIp(x)ϕ + Ip(x)ϕ̇2 + Ω2Ip(x)

+ Ω2Id(x)(β2x + β2y )
]︁
dx

With: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A11(x) = 2π
∫︀ R0(x)
Ri(x) Q11(r).r.dr

A55(x) = π
∫︀ R0(x)
Ri(x) Q55(r).r.dr

A66(x) = π
∫︀ R0(x)
Ri(x) Q66(r).r.dr

B11(x) = π
∫︀ R0(x)
Ri(x) Q11(r).r3.dr

B66(x) = 2π
∫︀ R0(x)
Ri(x) Q66(r).r3.dr

Im(x) = 2π
∫︀ R0(x)
Ri(x) ρ(r).r.dr

Id(x) = π
∫︀ R0(x)
Ri(x) ρ(r).r

3.dr
Ip(x) = 2π

∫︀ R0(x)
Ri(x) ρ(r).r

3.dr

(8)

With: ⎧⎨⎩Q11 = E(r)
1−ϑ(r)2

Q55 = Q66 = E(r)
2(1+ϑ(r))

(9)

{︃
Ri(x) = tan(α).x + Ri−L
Ro(x) = tan(α).x + (Ri−L + h)

(10a)

tan(α) = Ri−R − Ri−LL (10b)

With:
Ri−L: Left inner radius of the tapered shaft
Ri−R: Right inner radius of the tapered shaft

The displacement field of a point of the beam in free
vibration is given by:

qi(x, t) = [Ni(x)]T
{︀
qi (t)

}︀
(11)

=
∑︁p

n=1
gi,n(x).qi,n ..e(jωt)

Such as:
qi(x, t): Elemental displacement of the beam, with i=
U0, V0,W0, βx , βy , ϕ
Ni(x): Vector of the shape function{︀
qi(t)

}︀
: Temporary displacement coefficient vector

We use the following Lagrange equation:

d
dt

(︂
∂Ec
∂ {q̇i}

)︂
− ∂Ec
∂ {qi}

+ ∂Ed
∂ {qi}

= δA
δ {qi}

= Fi(t) (12)

For the determination of the global equation of motion,
Eqs. (5) and (7) are injected into the Lagrange formula (12):

[M] { q̈} + [G] { q̇} + [K] {q} = {0} (13)

4 Numerical results and discussion
The tapered rotor shaft ismodeled by a single bi-supported
element using the hierarchical finite element (h-p)method
with trigonometric shape functions shown in Eq. (13) com-
bined with the classical finite element method, indicated
in Eq. (14). The mechanical properties and the geometric
dimensions of the FGM shaft are illustrated in Table 1 [14].

g(x) =

⎧⎪⎪⎨⎪⎪⎩
g1(x) = (l − x)
g2(x) = x
gn+2(x) = (n, π, x) , n = 1, 2, 3, . . . , p

(14)

Figures 2, 3 and 4 show the Campbell’s diagram that
superimposes the evolution of the first three bending
modes depending on the rotational speed variation (Ω =
0 to 200 Hz) of a bi-supported hollow conical rotor shaft
(A-A) in FGM. The conical angle (α) is varied by 0∘ and 7∘

for a slenderness ratio set at L / D-L = 10. The intersection
points of the rotating speed line (Ω) with the fundamen-
tal frequencies curves indicate the values of the critical
speeds (Ωcr).

From the analysis of these figures, it should be noted
that the taper angle affects the critical speeds of the FGM
shaft, taking the example of the first bending mode, when
(α) varies from 0∘ to 7∘, the first fundamental frequencies
increase by 37.68% for Ω = 0 Hz and 48.82% for Ω = 200
Hz. So, we can deduce that the conical angle (α) has a sig-
nificant effect on the increase of the critical speeds of FGM
rotating shaft.

Table 1:Mechanical properties and geometric dimensions of the
FGM shaft

Geometric parameters: h = 0.002 m, D−L/ h = 500,
L / D−L = 20. The shear correction factor Ks = 0.5
Property FGM

Nickel (Ni) Stainless Steel (SS)
E (GPa) 205,098 207,788

Poisson’s ratio 0,31 0.317756
Density (kg/m3) 8900 8166
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Table 2: Variation of the fundamental frequencies (Hz) for extreme
materials and FGM constant shaft with rotation speed Ω = 0.

Fundamental frequencies (Hz)
Material Source First

frequency
(ω1)

Second
frequency

(ω2)

Third
frequency

(ω3)
Present 6.9257 26.924 52.437

Nickel
(Ni)

Ref [14]
Ref [15]

6.8577
6.9397

-
-

-
-

FGM
(Ni-SS)

Present
Ref [14]
Ref [15]

7.0985
7.0972
7.0584

27.596
-
-

53.747
-
-

Stainless
Steel
(SS)

Present
Ref [14]
Ref [15]

7.2965
-
-

28.358
-
-

54.938
-
-

Figure 2: Campbell’s diagram of the first-mode bending of FGM ta-
pered rotor shaft bi-supported (A-A) ((F) direct modes (B) retrograde
modes)

Figure 3: Campbell’s diagram of the second-mode bending of FGM
tapered rotor shaft bi-supported (A-A) ((F) direct modes (B) retro-
grade modes)

It may also be noted that the increase of the rotating
speed (Ω) generates a remarkable separation of the funda-
mental frequencies into two branches, these two frequen-
cies correspond to themode in direct precession andmode

Figure 4: Campbell’s diagram of the third-mode bending of FGM ta-
pered rotor shaft bi-supported (A-A) ((F) direct modes (B) retrograde
modes)

in retrograde precession; the direct modes increase with
the increase of the rotating speed, and however, the re-
verse modes decrease. We have also observed that for a
constant rotating shaft (α = 0∘), the difference between
the direct and the retrograde frequencies of the first three
bending modes is small compared to those of a tapered ro-
tating shaft inclined by α = 7∘. We can therefore say that
the gyroscopic effect of the FGM conical rotating shaft is
important when the taper angle take higher values.

5 Conclusion
In this article, we studied the dynamic behavior of bi-
supported Functionally Graded conical rotating shaft
based on an exponential law between two extreme mate-
rials (E-FGM). Our results were calculated using the hierar-
chical finite element method using the Timoshenko beam
theory (FSDBT)with considerationof gyroscopic effect and
rotary inertia. Several examples were processed to deter-
mine the effect of the conical angle (α) and the internal
properties on the fundamental frequencies of the FGM ta-
pered rotor shafts. This work allowed us to reach the fol-
lowing conclusions:

• The results of the frequencies calculated by the con-
tinuous function E-FGM have reached an excellent
agreement with the results found in the literature,
which thus validates the accuracy of our model de-
veloped.

• The conical angle of the rotor shafts has an apprecia-
ble influence on the bending frequencies, and con-
sequently, the critical speeds, whatever the speed of
rotation.
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• The gyroscopic effect of the conical rotating shaft is
important when the taper angle take larger values.
So, we can say that the change of the taper angle (α)
has a significant effect on the dynamic behavior of
the Functionally Graded conical rotor shafts system.
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